Maths Knowledge Organiser—Great Greeks Module—Summer 1

Section 1: Angles

- An angle is formed when two straight lines meet.
- The angle is the amount of turn around the point.
- We can classify angles as acute, obtuse, reflex or right angles.

Measuring angles

- Angles are measured with protractors.
- Angles are measured in degrees (${ }^{\circ}$)
- When using a protractor to measure an angle, make sure you use the correct scale on the protractor.

Section 2: Calculating Missing Angles

Angles on a straight line

The angles on a straight line add up to 180°

To calculate a missing angle along a straight line, subtract the given angle (or angles) from 180°

$$
180^{\circ}-100^{\circ}=80^{\circ}
$$

Angles in a full turn

A full turn is 360°
Angles around a full turn will always add up to 360°
To calculate a missing angle around a point in the middle of a full turn, subtract the given angle (or angles) from 360°

$$
360^{\circ}-240^{\circ}=120^{\circ}
$$

Section 3: Triangles and Quadrilaterals

- Triangles have three sides, three vertices (corners) and three angles.
- The angles inside a triangle add up to 180°.

- Quadrilaterals have four sides, four vertices and four angles.
- The angles inside a quadrilateral add up to 360°.

Section 4: Polygons

The word polygon comes from Greek words:

- polys meaning many
- gonos meaning angled

A polygon is a 2D shape which has at least three angles.

Regular polygons have angles and side lengths which are all the same.

Irregular polygons have some angles and

Equilateral Triangle

Regular
Heptagon

Square

Regular
Pentagon

Regular Hexagon
 side lengths which are not the same.

Section 5: Co-ordinates

Co-ordinates help us find the position of something.
Co-ordinate grids have two axes:

- horizontal (x) axis
- vertical (y) axis

Points along a horizontal line have the same y co-ordinate.

Points along a vertical line have the same x co-ordinate.

Look at the red circle.
It is 1 square across and 2 squares up.

We call this $(\mathbf{1 , 2})$
x co-ordinate y co-ordinate (across)
(up)

Remember:

Along the Corridor \rightarrow
Then up the Stairs \uparrow

